Удельная тепловая мощность

В формулах (VI.50) и (VI.5I): KF — водяной эквивалент поверхности нагрева или удельная тепловая мощность поверхности нагрева , Вт / К, ( Аг) шрт, ( КР) ирл и ( KF) общ соответственно водяные эквиваленты лротивоточной, прямоточной и общей поверхности нагрева, Вт / К. [17]

С), определяемая по графику в зависимости от радиуса зоны воздействия, удельной тепловой мощности и акустической интенсивности излучателя. [18]

Даны рекомендации по периодичности включения, по конструктивному исполнению нагревательного кабеля, по необходимой удельной тепловой мощности для ликвидации гидратных пробок и АСПО. [19]

КР) возвр и ( / С внешн — водяные эквиваленты поверхности нагрева или удельная тепловая мощность возвратного и внешнего потоков. [20]

Эта формула выражает закон Джоул я — Л е н ц а в локальной форме: удельная тепловая мощность тока пропорциональна квадрату плотности электрического тока и удельному сопротивлению среды в данной точке. [21]

Вероятно, наиболее жесткое воздействие на тепловыделяющие элементы реакторов на быстрых нейтронах оказывают напряжения, вызванные их высокой удельной тепловой мощностью и быстрыми изменениями температуры, обусловленными высокой теплопроводностью натрия. [23]

При использовании горелок завершенного предварительного смешения, как показали опыты, проведенные на одном из стендовых реакторов МЭИ, удельная тепловая мощность реактора может быть доведена до 23 — 25 МВт / м3 без существенного удлинения зоны горения. Неизменность длины зоны горения при изменении тепловой нагрузки циклонного реактора была обнаружена и при диффузионном горении газа и распыленного жидкого топлива. Рабочий объем циклонных реакторов для огневого обезвреживания сточных вод обычно определяется скоростью процесса испарения сточной воды. [24]

Как показали опыты, проведенные на одном из стендовых реакторов МЭИ, при использовании горелок с полным предварительным смешением удельная тепловая мощность реактора может быть доведена до 23 — 25 МВт / м 1 без существенного удлинения зоны горения. [25]

Продолжительность обработки определяют по графикам в зависимости от принятого радиуса воздействия, типа коллектора и насыщающей его среды, удельной тепловой мощности и акустической интенсивности излучателя. [26]

Наряду с хорошей гибкостью и высокой прочностью плоская форма ленты обеспечивает увеличенную поверхность теплообмена с нагреваемым трубопроводом или аппаратом и большую удельную тепловую мощность по сравнению с нагревателями круглой формы. [27]

В жидких средах, в том числе и в воде, можно получить достаточно устойчивый дуговой разряд, который, образуя высокую температуру и имея большую удельную тепловую мощность , испаряет и разлагает окружающую жидкость. Газ состоит в основном из водорода, образующегося при термической диссоциации водяного пара, а образующийся при диссоциации кислород окисляет материал электродов. [28]

В жидких средах, в том числе и в воде, можно также под водой получить достаточно устойчивый дуговой разряд, который, образуя высокую температуру и имея большую удельную тепловую мощность , испаряет и разлагает окружающую жидкость. Газ состоит в основном из водорода, образующегося при термической диссоциации водяного пара, а образующийся при диссоциации кислород окисляет материал электродов — происходит резка. [29]

Источник: www.ngpedia.ru

 

Рассмотрим однородный проводник, к концам которого приложено напряжение U. За «время dt через сечение проводника переносится заряд dq=Idt. Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, работа тока

Если сопротивление проводника R, то, используя законОма получим

Из уравнений следует, что мощность тока

Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии,

Таким образом, используя выражения 1 2 4 получим

Выражение представляет собой закон ДжоуляЛенца, экспериментально уста­новленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.*

Выделим в проводнике элементарный цилиндрический объем dV=dSdl (ось цилин­дра совпадает с направлением тока), сопротивление которого По закону Джоуля — Ленца, за время dt в этом объеме выделится теплота

Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью тока. Она равна

Если же электрическая цепь замкнута, то выбранные точки 1 и 2 со­впадают, j1=j2, тогда получаем закон Ома для замкнутой цепи:

где — э.д.с., действующая в цепи, R — суммарное сопротивление всей цепи. В общем случае R=r+R1, где r — внутреннее сопротивление источника тока, R1со­противление внешней цепи. Поэтому законОма для замкнутой цепи будет иметь вид

Дата добавления: 2015-04-19 , просмотров: 866 . Нарушение авторских прав

Источник: studopedia.info

 

Следовательно, из уравнения (5.28) следует, что тепловая мощность

выделяемая на участке цепи 1-2, равна алгебраической сумме мощностей кулоновских и сторонних сил. Если цепь замкнута, то затраченная мощность

N =I . (5.30)

Если электрическая цепь замкнута и содержит источника с ЭДС , то вся затраченная источником тока работа АЗ = АП + АВНУТ,

где АЗ = It, АП = IURt, АВНУТ = IUrt.

Тогда = UR + Ur = IR+ Ir, (5.20)

где UR — напряжение на внешнем сопротивлении, Ur — напряжение на внутреннем сопротивлении источника тока.

Мощность тока можно найти по формуле N = . (5.21)

Развиваемая источником тока затраченная мощность

где NЗ= I, NП = IUR, NВНУТ = IUr.

КПД источника тока можно найти по формуле

 = . (5.23)

Затраченная источником тока мощность

NЗ = I=/(R+r), (5.24)

где I = /(R + r).

Полезная мощность, выделяемая во внешнем участке цепи

NП = IUR = I 2 R =.

Следовательно, затраченная и полезная мощности являются функциями от внешнего сопротивления. Если R 0, то NП  0, R , то NП  0. В этом случае функция NП = f2 (R) имеет один максимум. Найдем условие, при котором полезная мощность максимальна, т. е. NП = NП, МАХ. Для этого производную приравняем нулю, т. е.= 0, т. е.(r 2 -R 2 ) = 0. ( 0, то R = r и  = 0,5). Вывод: Если R = r , то полезная мощность максимальна, а КПД источника тока равно 50%.

Калькулятор

Сервис бесплатной оценки стоимости работы

  1. Заполните заявку. Специалисты рассчитают стоимость вашей работы
  2. Расчет стоимости придет на почту и по СМС

Номер вашей заявки

Прямо сейчас на почту придет автоматическое письмо-подтверждение с информацией о заявке.

Источник: studfiles.net

 

УДЕЛЬНАЯ ТЕПЛОВАЯ ХАРАКТЕРИСТИКА АДМИНИСТРАТИВНЫХ, ЛЕЧЕБНЫХ

И КУЛЬТУРНО-ПРОСВЕТИТЕЛЬНЫХ ЗДАНИЙ, ДЕТСКИХ УЧРЕЖДЕНИЙ

Значение V, куб. м, следует принимать по информации типового или индивидуального проектов здания или бюро технической инвентаризации (БТИ).

Если здание имеет чердачное перекрытие, значение V, куб. м, определяется как произведение площади горизонтального сечения здания на уровне его 1 этажа (над цокольным этажом) на свободную высоту здания — от уровня чистого пола 1 этажа до верхней плоскости теплоизоляционного слоя чердачного перекрытия, при крышах, совмещенных с чердачными перекрытиями, — до средней отметки верха крыши. Выступающие за поверхности стен архитектурные детали и ниши в стенах здания, а также неотапливаемые лоджии при определении расчетной часовой тепловой нагрузки отопления не учитываются.

При наличии в здании отапливаемого подвала к полученному объему отапливаемого здания необходимо добавить 40% объема этого подвала. Строительный объем подземной части здания (подвал, цокольный этаж) определяется как произведение площади горизонтального сечения здания на уровне его I этажа на высоту подвала (цокольного этажа).

1.4. В случае, если часть жилого здания занята общественным учреждением (контора, магазин, аптека, приемный пункт прачечной и т.д.), расчетная часовая тепловая нагрузка отопления должна быть определена по проекту. Если расчетная часовая тепловая нагрузка в проекте указана только в целом по зданию или определена по укрупненным показателям, тепловую нагрузку отдельных помещений можно определить по площади поверхности теплообмена установленных нагревательных приборов, используя общее уравнение, описывающее их теплоотдачу:

k — коэффициент теплопередачи нагревательного прибора, ккал/(кв. м ч °С),

F — площадь поверхности теплообмена нагревательного прибора, кв. м,

ДЕЛЬТА t — температурный напор нагревательного прибора, °С, определяемый как разность средней температуры нагревательного прибора конвективно-излучающего действия и температуры воздуха в отапливаемом здании.

Методика определения расчетной часовой тепловой нагрузки отопления по поверхности установленных нагревательных приборов систем отопления приведена в [10].

1.6. При отсутствии проектных данных и определении расчетной часовой тепловой нагрузки отопления производственных, общественных, сельскохозяйственных и других нетиповых зданий (гаражей, подземных отапливаемых переходов, бассейнов, магазинов, киосков, аптек и т.д.) по укрупненным показателям уточнение значений этой нагрузки следует производить по площади поверхности теплообмена установленных нагревательных приборов систем отопления в соответствии с методикой, приведенной в [10]. Исходная информация для расчетов выявляется представителем теплоснабжающей организации в присутствии представителя абонента с составлением соответствующего акта.

1.7. Расход тепловой энергии на технологические нужды теплиц и оранжерей, Гкал/ч, определяется из выражения:

Источник: www.sudact.ru

Читайте также  Проникающая гидроизоляция для фундамента Поделитесь статьей в соц. сетях:

Оцените статью
Ремонт квартиры своими руками - школа ремонта remont-samomy.ru